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Abstract
Conformal self-dual fields in flat spacetime of even dimension greater than
or equal to 4 are studied. Ordinary-derivative formulation of such fields
is developed. Gauge invariant Lagrangian with conventional kinetic terms
and corresponding gauge transformations are obtained. Gauge symmetries
are realized by involving the Stueckelberg fields. The realization of global
conformal symmetries is obtained. The light-cone gauge Lagrangian is found.
Also, we demonstrate the use of the light-cone gauge for counting the on-shell
degrees of freedom of the conformal self-dual fields.

PACS numbers: 11.25.Hf, 11.15.−q, 11.15.Ex

1. Introduction

In Poincaré and conformal supergravity theories, the self-duality manifests itself in different
ways. In Poincaré supergravity theories, some of the antisymmetric tensor fields are not self-
dual, while their field strengths are self-dual (see, e.g., [1]).1 In contrast to this, in conformal
supergravity theories, some of the antisymmetric tensor fields are self-dual themselves, while
their field strengths are not self-dual (see, e.g., [6]).

In Poincaré supergravity theories, the antisymmetric tensor fields are realized as gauge
fields, while in the standard approach to conformal supergravity theories there are no
gauge symmetries related to the self-dual antisymmetric tensor fields. Note also that the
antisymmetric tensor fields of Poincaré supergravity theories describe ghost-free dynamics,
while the ones of conformal supergravity theories contain ghost degrees of freedom.

In this paper, we discuss the self-dual antisymmetric tensor fields of conformal
supergravity theories (which are well defined only in d = 4, 6) and their counterparts in

1 It is the self-duality of the field strength that leads to the problem with Lorentz invariant action for the gauge
antisymmetric tensor field [2] without the use of auxiliary fields. The study of the Lorentz covariant formulations
involving auxiliary fields may be found in [3, 4]. An interesting discussion of self-dual fields in d = 6, 10 may be
found in [5].
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spacetimes of arbitrary even dimensions. It is these self-dual antisymmetric tensor fields that
will be referred to as conformal self-dual fields, or shortly as self-dual fields in this paper.

The standard formulation of the self-dual fields involves exotic kinetic terms2. These
exotic kinetic terms can be re-expressed in terms of kinetic terms involving the standard
Dalambertian operator but this leads to higher derivatives (see e.g. [6]). Also, as was mentioned
above, in the standard approach, there are no gauge symmetries associated with such self-dual
fields.

The purpose of this paper is to develop an ordinary (not higher-) derivative, gauge invariant
and Lagrangian formulation for the self-dual fields3. In this paper, we discuss free self-dual
fields in the spacetime of even dimension d � 4. Our approach to the self-dual fields can be
summarized as follows.

(i) We introduce additional field degrees of freedom (D.o.F.), i.e. we extend the space of
fields entering the standard formulation of self-dual fields. These additional field D.o.F.
are supplemented by appropriate gauge symmetries4. We note that these additional field
D.o.F. are similar to the ones used in the gauge invariant formulation of massive fields.
Sometimes, such additional field D.o.F. are referred to as Stueckelberg fields.

(ii) Our Lagrangian for the free self-dual fields does not involve higher than second-order
terms in derivatives. Two-derivative contributions to the Lagrangian take the form of the
standard kinetic terms of the antisymmetric tensor fields. The Lagrangian is invariant
under gauge transformations and global conformal algebra transformations.

(iii) Gauge transformations of the free self-dual fields do not involve higher than first-order
terms in derivatives. One-derivative contributions to the gauge transformations take the
form of the standard gauge transformations of the antisymmetric tensor fields.

(iv) The gauge symmetries of our Lagrangian make it possible to match our approach with
the standard one, i.e. by an appropriate gauge fixing of the Stueckelberg fields and by
solving some constraints, we obtain the standard formulation of the self-dual fields. This
implies that our approach retain on-shell D.o.F. of the standard theory of self-dual fields,
i.e. on-shell, our approach is equivalent to the standard one.

As is well known, the Stueckelberg approach turned out to be successful for the study
of theories involving massive fields. That is to say that all covariant formulations of string
theories are realized by using Stueckelberg gauge symmetries. The self-dual fields enter
the field content of conformal supergravity theories. Therefore, we expect that the use of
the Stueckelberg fields for studying the self-dual fields might be useful for developing new
interesting formulations of the conformal supergravity theories.

The rest of the paper is organized as follows.
In section 2, we summarize the notation and review the standard approach to the self-dual

fields.
In section 3, we start with the example of a self-dual field propagating in 4d Minkowski

space. For this field, we obtain the ordinary-derivative gauge invariant Lagrangian. We find
the realization of the conformal so(4, 2) algebra symmetries on the space of gauge fields
and on the space of field strengths. Also we obtain the light-cone gauge Lagrangian and
demonstrate that the number of on-shell D.o.F. of our approach coincides with the one in the

2 For instance, the self-dual field Tab of N = 4, 4d conformal supergravity is described by the Lagrangian
L = ∂aT̄ ab∂cT cb .
3 Making comparison with various approaches to massive fields, one can say that the standard approach to the
self-dual fields is a counterpart of the Pauli–Fierz approach to the massive fields, while our approach to the self-dual
fields is a counterpart of the Stueckelberg approach to the massive fields.
4 To realize those additional gauge symmetries, we adopt the approach of [7, 8] which turns out to be the most useful
for our purposes.
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standard approach to the self-dual field. We discuss the decomposition of those on-shell D.o.F
into irreps of the so(2)algebra.

In section 4, we generalize results obtained in section 3 to the case of self-dual fields
propagating in Minkowski space of arbitrary dimension.

In section 5, we represent our results in sections 3 and 4 by using the realization of field
degrees of freedom in terms of generating functions. The generating functions are constructed
out of the self-dual gauge fields and some oscillators. The use of the generating functions
simplifies considerable study of the self-dual fields. Therefore, we believe that the result in
section 5 might be helpful in future studies of the self-dual fields.

Section 6 suggests directions for future research.
We collect various technical details in the appendices. In appendix A, we discuss details

of the derivation of the ordinary-derivative gauge invariant Lagrangian. In appendix B, we
present details of the derivation of the conformal algebra transformations of gauge fields. In
appendix C, we discuss some details of the derivation of the light-cone gauge Lagrangian. In
appendix D, we collect some useful formulas involving the Levi-Civita symbol.

2. Preliminaries

2.1. Notation

Throughout the paper, the dimension of a flat spacetime, which we denote by d, is restricted
to be an even integer, d = 2ν. Coordinates in the flat spacetime are denoted by xa, while ∂a

stands for the derivative with respect to xa, ∂a ≡ ∂/∂xa . Vector indices of the Lorentz algebra
so(d − 1, 1) take the values a, b, c, e = 0, 1, . . . , d − 1. To simplify our expressions, we drop
ηab in scalar products, i.e. we use XaY a ≡ ηabX

aY b. The notation εa1...aνb1...bν stands for the
Levi-Civita symbol. We assume the normalization ε01...d−1 = 1.

To avoid complicated tensor expressions, we use a set of the creation operators αa , ζ , υ⊕,
υ�, and the respective set of annihilation operators ᾱa , ζ̄ , ῡ�, ῡ⊕:

ᾱa|0〉 = 0, ζ̄ |0〉 = 0, ῡ⊕|0〉 = 0, ῡ�|0〉 = 0. (2.1)

These operators satisfy the following (anti)commutation relations:

{ᾱa, αb} = ηab, {ζ̄ , ζ } = 1, (2.2)

[ῡ⊕, υ�] = 1, [ῡ�, υ⊕] = 1, (2.3)

and will often be referred to as oscillators in what follows5. The oscillators αa , ᾱa and ζ , ζ̄ ,
υ⊕, υ�, ῡ⊕, ῡ� transform in the respective vector and scalar representations of the so(d − 1, 1)

Lorentz algebra and satisfy the following Hermitian conjugation rules:

αa† = ᾱa, ζ † = ζ̄ , υ⊕† = ῡ⊕, υ�† = ῡ�. (2.4)

Throughout this paper, we use operators constructed out of the oscillators and derivatives

� = ∂a∂a, α∂ = αa∂a, ᾱ∂ = ᾱa∂a, (2.5)

Nα ≡ αaᾱa, (2.6)

5 We use oscillator formulation [9–14] to handle the many indices appearing for tensor fields. It can also be
reformulated as an algebra acting on the symmetric-spinor bundle on the manifold M [15]. Note that the scalar
oscillators ζ , ζ̄ arise naturally by a dimensional reduction from flat space. It is natural to expect that the ‘conformal’
oscillators υ⊕, υ�, ῡ⊕, ῡ� also allow certain interpretation via dimensional reduction. Interesting recent discussion
of dimensional reduction may be found in [16].
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Nζ ≡ ζ ζ̄ , (2.7)

Nυ⊕ ≡ υ⊕ῡ�, (2.8)

Nυ� ≡ υ�ῡ⊕, (2.9)

Nυ ≡ Nυ⊕ + Nυ� . (2.10)

2.2. Global conformal symmetries

In the spacetime of dimension d, the conformal algebra so(d, 2) referred to the basis of
Lorentz algebra so(d − 1, 1) consists of translation generators Pa, conformal boost generators
Ka, dilatation generator D and generators so(d − 1, 1) Lorentz algebra Jab. We assume the
following normalization for commutators of the conformal algebra:

[D,P a] = −P a, [P a, J bc] = ηabP c − ηacP b, (2.11)

[D,Ka] = Ka, [Ka, J bc] = ηabKc − ηacKb, (2.12)

[P a,Kb] = ηabD − J ab , (2.13)

[J ab, J ce] = ηbcJ ae + 3 terms. (2.14)

Let |φ〉 denote the field propagating in the flat spacetime of dimension d � 4. Let the
Lagrangian for the free field |φ〉 be conformal invariant. This implies that the Lagrangian is
invariant with respect to the transformation (invariance of the Lagrangian is assumed to be up
to the total derivative)

δĜ|φ〉 = Ĝ|φ〉 , (2.15)

where a realization of the conformal algebra generators Ĝ in terms of differential operators
takes the form

P a = ∂a , (2.16)

J ab = xa∂b − xb∂a + Mab , (2.17)

D = x∂ + �, (2.18)

Ka = Ka
�,M + Ra , (2.19)

Ka
�,M ≡ − 1

2x2∂a + xaD + Mabxb , (2.20)

x∂ ≡ xa∂a, x2 = xaxa. (2.21)

In (2.17)–(2.19), � is the operator of conformal dimension, Mab is the spin operator of the
Lorentz algebra,

[Mab,Mce] = ηbcMae + 3 terms, (2.22)

and Ra is the operator depending on the derivative ∂a and not depending on the spacetime
coordinates xa, [P a,Rb] = 0. The spin operator Mab is well known for arbitrary tensor fields
of the Lorentz algebra. In the standard formulation of the self-dual fields, the operator Ra is
equal to zero, while in the ordinary-derivative approach, we develop in this paper, the operator
Ra is non-trivial. This implies that, in the framework of the ordinary-derivative approach,
the complete description of the self-dual fields requires finding not only the gauge invariant
Lagrangian but also the operator Ra.
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An explicit representation for the action of the operator Ka
�,M (2.20) is easily obtained

from the relations given above. Let �a1...an be the rank-n antisymmetric tensor field of the
Lorentz algebra so(d − 1, 1), while �(�) is a conformal dimension of this tensor field.
Relation (2.19) implies that the conformal boost transformations of �a1...an can be presented
as

δKa�a1...an = δKa
�,M

�a1...an + δRa�a1...an , (2.23)

δKa
�,M

�a1...an = Ka
�(�)�

a1...an +
n∑

k=1

Maakc�a1...ak−1cak+1...an , (2.24)

Ka
� ≡ −1

2
x2∂a + xa(x∂ + �), (2.25)

Mabc ≡ ηabxc − ηacxb. (2.26)

Thus, all that remains is to find explicit representation for the operator Ra. This is what we are
doing, among other things, in this paper.

2.3. Standard approach to self-dual fields

We begin with a brief review of the standard approach to the conformal self-dual fields. In
this section we recall the main facts of conformal field theory about these fields.

Consider the totally antisymmetric rank-ν tensor field T a1...aν , ν ≡ d
2 , of the Lorentz

algebra so(d − 1, 1), where the dimension of spacetime d is an even integer. In the framework
of a standard approach, the field T a1...aν is referred to as a conformal self-dual field if it meets
the following requirements.

(a) The field T a1...aν satisfies the self-duality constraint

T a1...aν = τ

ν!
εa1...aνb1...bν T b1...bν , (2.27)

τ =
{±i for d = 4k;
±1 for d = 4k + 2,

(2.28)

where εa1...aνb1...bν is the Levi-Civita symbol. For flexibility, we do not fix the sign of τ .
Constraint (2.27) implies that T a1...aν is complex-valued when d = 4k. In d = 4k + 2, the
field T a1...aν is considered to be real-valued.

(b) Dynamics of the field T a1...aν is described by the Lagrangian

Lst = 1

(ν − 1)!
∂aT̄ aa2...aν ∂bT ba2...aν , for d = 4k, (2.29)

Lst = 1

(ν − 1)!
∂aT aa2...aν ∂bT ba2...aν , for d = 4k + 2 , (2.30)

where T̄ in (2.29) stands for the complex conjugate of T.

We now note the following.

(i) Requiring the Lagrangian to be invariant under the dilatation transformation, we obtain
the conformal dimension of the field T a1...aν ,

�(T a1...aν ) = d − 2

2
, (2.31)

which is referred to as the canonical conformal dimension of the conformal self-dual field.
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(ii) The operator Ra of the field T a1...aν is equal to zero.
(iii) The simplest case of the self-dual field, which is an antisymmetric complex-valued rank-2

tensor field Tab, corresponds to d = 4 with the following self-duality constraint (see
(2.27)):

T ab = τ

2
εabceT ce. (2.32)

The Lagrangian for the field Tab can be read from (2.29):

Lst = ∂aT̄ ac∂bT bc. (2.33)

The field Tab appears in the field content of N = 4, 4d conformal supergravity.

3. Ordinary-derivative approach to the self-dual field for d = 4

As a warm up, let us start with the simplest case of the self-dual fields. Consider the self-
dual field Tab propagating in 4d flat space. In the framework of the ordinary-derivative
approach, a dynamical system whose on-shell equivalent to the self-dual field Tab with the
Lagrangian (2.33) involves two vector fields φa

−1 and φa
1 , one scalar field φ0 and one self-dual

rank-2 tensor field tab. In other words, we use the following field content:

φa
−1, φa

1 , φ0, tab, (3.1)

tab = τ

2
εabcetce , (3.2)

τ = ±i. All fields in (3.1) are complex-valued. Conformal dimensions of these fields are
given by

�
(
φa

−1

) = 0, �
(
φa

1

) = 2, �(φ0) = 1, �(tab) = 1. (3.3)

We note that the subscript k′ in φk′ implies that the conformal dimension of the field φk′ is
equal to 1 + k′.

The ordinary-derivative action and Lagrangian we found take the form

S =
∫

d4xL, (3.4)

L = −1

2
Fab(φ̄−1)F

ab(φ1) − 1

2
Fab(φ̄1)F

ab(φ−1)

−1

2
t̄ abF ab(φ1) − 1

2
Fab(φ̄1)t

ab − (
φ̄a

1 + ∂aφ̄0
)(

φa
1 + ∂aφ0

)
, (3.5)

where φ̄k′ and t̄ ab are the respective complex conjugates of φk′ and tab, while Fab(φ) stands
for the field strength defined as

Fab(φ) ≡ ∂aφb − ∂bφa. (3.6)

Details of the derivation of Lagrangian (3.5) may be found in appendix A.
A few remarks are in order.

(i) Two-derivative contributions to Lagrangian (3.5) are the standard kinetic terms for the
vector fields φa

−1, φa
1 and the standard Klein–Gordon kinetic term for the scalar field φ0.

(ii) In addition to the two-derivative contributions, the Lagrangian involves one-derivative
contributions and derivative-independent mass-like contributions. The appearance of
the one-derivative and derivative-independent contributions to the Lagrangian is a
characteristic feature of the ordinary-derivative approach.
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(iii) The self-dual field tab plays the role of a Lagrangian multiplier. Equations of motion
for tab together with the self-duality constraint for tab (3.2) tell us that on-shell the field
strength Fab(φ1) is self-dual:

Fab(φ1) = τ

2
εabceF ce(φ1). (3.7)

3.1. Gauge transformations

To discuss gauge symmetries of Lagrangian (3.5), we introduce the following gauge
transformation parameters:

ξ−2, ξ0, λa. (3.8)

All these gauge transformation parameters are complex-valued. Conformal dimensions of the
gauge transformation parameters are given by

�(ξ−2) = −1, �(ξ0) = 1, �(λa) = 0. (3.9)

We find that Lagrangian (3.5) is invariant under the gauge transformations

δφa
1 = ∂aξ0 , (3.10)

δφa
−1 = ∂aξ−2 − λa , (3.11)

δφ0 = −ξ0 , (3.12)

δtab = Fab(λ) +
τ

2
εabceF ce(λ), (3.13)

where the field strength Fab(λ) for the gauge transformation parameter λa is defined as in
(3.6).

From (3.11), (3.12), we see that the vector and scalar fields, φa
−1, φ0, transform as

Stueckelberg fields, i.e. these fields can be gauged away via Stueckelberg gauge fixing,
φa

−1 = 0, φ0 = 0. If we gauge away these fields, and exclude the vector field φa
1 via

equations of motion, then our Lagrangian reduces to the Lagrangian of the standard approach
(2.33). Note also that, in the Stueckelberg gauge, the field tab is identified with the generic
self-dual field Tab. Thus, our approach is equivalent to the standard one.

3.2. Realization of conformal algebra symmetries

To complete the ordinary-derivative description of the conformal self-dual field, we should
provide the realization of the conformal algebra symmetries on a space of fields (3.1). The
Poincaré algebra symmetries are realized on fields (3.1) in a standard way. The realization of
dilatation symmetry is given by (2.18), where conformal dimensions of fields (3.1) are given
in (3.3). A general realization of conformal boost symmetries on arbitrary tensor fields is
given in (2.23). According to (2.23), we should find realizations of the operators Ka

�,M and
Ra on a space of fields (3.1). The realization of the former operator is obtained by adopting
the general formula (2.24) for gauge fields (3.1):

δKa
�,M

φb
k′ = Ka

�(φk′ )φ
b
k′ + Mabcφc

k′ , k′ = ±1, (3.14)

δKa
�,M

φ0 = Ka
�(φ0)

φ0 , (3.15)

δKa
�,M

ta1a2 = Ka
�(t)t

a1a2 + Maa1ctca2 + Maa2cta1c , (3.16)

where the operator Ka
� and conformal dimensions are defined in (2.25) and (3.3), respectively.
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The real difficulty is to find the operator Ra. The realization of the operator Ra on a space
of gauge fields (3.1) that we found is given by

δRaφb
1 = −tab − ηabφ0 − ∂aφb

−1 − τ

2
εabceF ce(φ−1), (3.17)

δRaφb
−1 = 0 , (3.18)

δRaφ0 = φa
−1 , (3.19)

δRa ta1a2 = ηaa1φ
a2
−1 − ηaa2φ

a1
−1 + τεa1a2abφb

−1. (3.20)

Using (3.14)–(3.20) and general formula (2.23),

δKa = δKa
�,M

+ δRa , (3.21)

gives the conformal boost transformations of the gauge fields.
From (3.17)–(3.20), we see that the operator Ra maps the gauge field with a conformal

dimension � into the ones having a conformal dimension less than �. This is to say that the
realization of the operator Ra given in (3.17)–(3.20) can schematically be represented as

φ1
R−→ t ⊕ φ0 ⊕ ∂φ−1, (3.22)

t
R−→ φ−1, φ0

R−→ φ−1, φ−1
R−→ 0. (3.23)

Details of the derivation of the operator Ra may be found in appendix B.6 As a side of remark
we note that, having introduced the field content and the Lagrangian, the operator Ra is fixed
uniquely by requiring that

(i) the operator Ra should not involve higher than first-order terms in the derivative;
(ii) the Lagrangian should be invariant under the conformal algebra transformations.

As usual, the conformal algebra transformations of gauge fields (3.1) are defined up to
gauge transformations. Alternatively, the conformal algebra symmetries can be realized on
a space of field strengths. We now discuss field strengths for gauge fields (3.1) and the
corresponding conformal transformations of the field strengths.

3.3. Realization of conformal algebra symmetries on the space of field strengths

We introduce the following field strengths which are constructed out of gauge fields (3.1):

F �ab = T ab, (3.24)

Fabc = Fabc(T ) , (3.25)

F ⊕�a = φa
1 + ∂aφ0, (3.26)

F ⊕ab = Fab(φ1) , (3.27)

where Fab(φ1) is defined as in (3.6), while Tab and Fabc(T ) are defined by the respective
relations:

T ab = tab + Fab(φ−1) +
τ

2
εabceF ce(φ−1), (3.28)

6 In appendix B, the operator Ra is obtained by using the realization of field D.o.F. in terms of generating functions.
The discussion of the generating functions may be found in section 5. Therefore, before reading appendix B, the
reader should consult section 5.
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Fabc(T ) = ∂aT bc + ∂bT ca + ∂cT ab . (3.29)

One can make sure that field strengths (3.24)–(3.27) are invariant under gauge transformations
(3.10)–(3.13). Conformal dimensions of the field strengths can easily be read from
relations (3.3) and (3.24)–(3.27):

�(F �ab) = 1, �(F abc) = 2, �(F ⊕�a) = 2, �(F ⊕ab) = 3. (3.30)

Poincaré algebra symmetries are realized on a space of the field strengths in a usual way.
The realization of dilatation symmetry is given by (2.18), where conformal dimensions of the
field strengths are given in (3.30). All that remains is to find conformal boost transformations
of the field strengths. Making use of the conformal boost transformations of the gauge fields
defined by relations (3.14)–(3.20), we find the corresponding conformal boost transformations
of the field strengths. Those conformal boost transformations of the field strengths can be
represented as in (2.23), (2.24), where we substitute, in place of the tensor fields �a1...an , the
fields strengths with the following realization of the operator Ra:

δRaF �bc = 0 , (3.31)

δRaF bce = −ηabF �ce − ηacF �eb − ηaeF �bc , (3.32)

δRaF ⊕�b = −F �ab , (3.33)

δRaF ⊕bc = ηabF ⊕�c − ηacF ⊕�b + Fabc − ∂aF �bc. (3.34)

From (3.31)–(3.34), we see that the operator Ra maps the field strength with a conformal
dimension � into the ones having a conformal dimension less than �. In other words, the
realization of the operator Ra given in (3.31)–(3.34) can schematically be represented as

F ⊕ R−→ F ⊕� ⊕ F ⊕ ∂F �, (3.35)

F
R−→ F �, F ⊕� R−→ F �, F � R−→ 0. (3.36)

3.4. On-shell degrees of freedom and light-cone gauge Lagrangian

In order to discuss on-shell D.o.F. of the conformal self-dual field, we use a nomenclature of
the so(d −2) algebra which is so(2) when d = 4 . Namely, we decompose the on-shell D.o.F.
into irreps of the so(2) algebra. One can prove that the on-shell D.o.F. of the self-dual field
are described by two so(2) algebra self-dual complex-valued vector fields φi

−1, φi
1 and one

complex-valued scalar fields φ0:

φi
−1 , φi

1 , φ0, (3.37)

where vector indices of the so(2) algebra take values i, j = 1, 2. The vector fields satisfy the
so(2) self-duality constraint:

φi
−1 = τ−1εijφ

j

−1, φi
1 = τ−1εijφ

j

1 , (3.38)

where εij is the Levi-Civita symbol normalized as ε12 = 1.
Using the light-cone gauge frame, one can make sure that the gauge invariant

Lagrangian (3.5) leads to the following light-cone gauge Lagrangian for fields (3.37):

Ll.c. = φ̄i
1 �φi

−1 + φ̄i
−1 � φi

1 + φ̄0 �φ0 − φ̄i
1φ

i
1. (3.39)

Details of the derivation of the on-shell D.o.F. and the light-cone gauge Lagrangian may be
found in appendix C.
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From (3.37), (3.38), we see that the number of real-valued on-shell D.o.F. is equal to 6.
This result agrees with the one found in [6]. Note however that we not only find the number
of the on-shell D.o.F. but also provide the decomposition of those on-shell D.o.F. into irreps
of the so(2)algebra.

4. Ordinary-derivative approach to the self-dual field for arbitrary d = 2ν

We now develop the ordinary-derivative approach to the conformal self-dual field propagating
in flat spacetime of an arbitrary even dimension d = 2ν. To discuss the ordinary-derivative
approach to the self-dual field, we use the following field content:

φ
a1...aν−1
−1 , φ

a1...aν−1
1 , φ

a1...aν−2
0 , ta1...aν , (4.1)

where the field ta1...aν satisfies the self-duality constraint

ta1...aν = τ

ν!
εa1...aνb1...bν tb1...bν , (4.2)

and τ is defined in (2.28). We note that

(i) fields in (4.1) are antisymmetric tensor fields of the Lorentz algebra so(d − 1, 1);
(ii) fields in (4.1) are complex-valued when d = 4k and real-valued when d = 4k + 2;

(iii) conformal dimensions of fields in (4.1) are given by

�
(
φ

a1...aν−1
−1

) = d − 4

2
, �

(
φ

a1...aν−1
1

) = d

2
, �

(
φ

a1...aν−2
0

) = d − 2

2
,

�(ta1...aν ) = d − 2

2
. (4.3)

We note that the subscript k′ in φk′ implies that the conformal dimension of the field φk′

is equal to d−2
2 + k′.

An ordinary-derivative action that we found is given by

S =
∫

ddx L , (4.4)

where the Lagrangian takes the form

L = − 1

ν!
Fa1...aν (φ̄−1)F

a1...aν (φ1) − 1

ν!
Fa1...aν (φ̄1)F

a1...aν (φ−1)

− 1

ν!
t̄ a1...aν F a1...aν (φ1) − 1

ν!
ta1...aν F a1...aν (φ̄1)

− 1

(ν − 1)!

(
φ̄

a1...aν−1
1 + Fa1...aν−1(φ̄0)

)(
φ

a1...aν−1
1 + Fa1...aν−1(φ0)

)
, (4.5)

when d = 4k, while for d = 4k + 2, the Lagrangian is given by

L = − 1

ν!
Fa1...aν (φ−1)F

a1...aν (φ1) − 1

ν!
ta1...aν F a1...aν (φ1)

− 1

2(ν − 1)!

(
φ

a1...aν−1
1 + Fa1...aν−1(φ0)

)(
φ

a1...aν−1
1 + Fa1...aν−1(φ0)

)
, (4.6)

where the field strengths are defined as

Fa1...an (φ) = n∂ [a1φa2...an] (4.7)

and the antisymmetrization of the tensor indices is normalized as [a1 . . . an] = 1
n! (a1 . . . an ±

(n! − 1) terms).
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We note that

(i) two-derivative contributions to Lagrangians (4.5), (4.6) take the form of standard
second-order kinetic terms for antisymmetric tensor fields. Besides the two-derivative
contributions, the Lagrangians involve one-derivative contributions and derivative-
independent mass-like contributions.

(ii) Equations of motion for ta1...aν and the self-duality constraint for ta1...aν (4.2) imply that
on-shell the field strength Fa1...aν (φ1) satisfies the self-duality constraint:

Fa1...aν (φ1) = τ

ν!
εa1...aνb1...bν F b1...bν (φ1). (4.8)

4.1. Gauge transformations

We now discuss gauge symmetries of Lagrangians (4.5), (4.6). To this end, we introduce the
following gauge transformation parameters:

ξ
a1...aν−2
−2 , ξ

a1...aν−2
0 , ξ

a1...aν−3
−1 , λa1...aν−1 . (4.9)

We note that

(i) gauge transformation parameters (4.9) are antisymmetric tensor fields of the Lorentz
algebra so(d − 1, 1);

(ii) gauge transformation parameters (4.9) are complex-valued when d = 4k and real-valued
when d = 4k + 2;

(iii) conformal dimensions of gauge transformation parameters (4.9) are given by

�
(
ξ

a1...aν−2
−1

) = d − 6

2
, �

(
ξ

a1...aν−2
0

) = d − 2

2
, �

(
ξ

a1...aν−3
−1

) = d − 4

2
,

�(λa1...aν−1) = d − 4

2
. (4.10)

Gauge transformations that we found take the form

δφ
a1...aν−1
1 = Fa1...aν−1(ξ0), (4.11)

δφ
a1...aν−1
−1 = Fa1...aν−1(ξ−2) − λa1...aν−1 , (4.12)

δφ
a1...aν−2
0 = Fa1...aν−2(ξ−1) − ξ

a1...aν−2
0 , (4.13)

δta1...aν = Fa1...aν (λ) +
τ

ν!
εa1...aνb1...bν F b1...bν (λ), (4.14)

where strengths for the gauge transformation parameters are defined as in (4.7).
From (4.12), (4.13), we see that the gauge fields φ

a1...aν−1
−1 , φ

a1...aν−2
0 transform as

Stueckelberg fields, i.e. these fields can be gauged away via Stueckelberg gauge fixing,
φ

a1...aν−1
−1 = 0, φ

a1...aν−2
0 = 0. If we gauge away these fields and exclude the field φ

a1...aν−1
1 via

equations of motion, then our Lagrangians (4.5), (4.6) reduce to the respective Lagrangians
of the standard approach, (2.29), (2.30). Thus, our approach is equivalent to the standard one.
Note that one-derivative contributions to gauge transformations (4.11)–(4.14) take the form
of the standard gauge transformations for antisymmetric tensor fields.
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4.2. Realization of conformal algebra symmetries

To complete the ordinary-derivative description of the conformal self-dual field, we should
provide the realization of the conformal algebra symmetries on a space of tensor fields (4.1).
The realization of the Poincaré algebra symmetries on the tensor fields is well known. The
realization of dilatation symmetry is given by (2.18), where conformal dimensions of fields
(4.1) are given in (4.3). The general form of conformal boost transformations of arbitrary
tensor fields is given in (2.23). According to (2.23), we should find realizations of the operators
Ka

�,M and Ra on space of fields (4.1). The realization of the former operator is obtained by
adopting the general formula (2.24) for gauge fields (4.1). The real problem is getting a
realization of the operator Ra. The realization of the operator Ra on the space of gauge fields
(4.1) that we found is given by

δRaφ
a1...aν−1
1 = −taa1...aν−1 − (ν − 1)ηa[a1φ

a2...aν−1]
0

− ∂aφ
a1...aν−1
−1 − τ

ν!
εaa1...aν−1b1...bν F b1...bν (φ−1), (4.15)

δRaφ
a1...aν−1
−1 = 0, (4.16)

δRaφ
a1...aν−2
0 = φ

aa1...aν−2
−1 , (4.17)

δRa ta1...aν = νηa[a1φ
a2...aν ]
−1 +

τ

(ν − 1)!
εa1...aνab1...bν−1φ

b1...bν−1
−1 . (4.18)

Making use of these relations and general formula (2.23) gives the conformal boost
transformations of gauge fields (4.1).

4.3. On-shell degrees of freedom and the light-cone gauge Lagrangian

We now discuss on-shell D.o.F. of the self-dual field. As before, for this purpose it is convenient
to use fields transforming in irreps of the so(d − 2) algebra. Using the method in appendix C,
one can prove that on-shell D.o.F. are described by the following antisymmetric tensor fields
of the so(d − 2) algebra:

φ
i1...iν−1
−1 , φ

i1...iν−1
1 , φ

i1...iν−2
0 , (4.19)

where vector indices of the so(d − 2) algebra take values i, j = 1, 2, . . . d − 2. Fields in
(4.19) are complex-valued when d = 4k and real-valued when d = 4k + 2. The fields φ

i1...iν−1
−1 ,

φ
i1...iν−1
1 satisfy the so(d − 2) self-duality constraint:

φ
i1...iν−1
−1 = τ−1

(ν − 1)!
εi1...iν−1j1...jν−1φ

j1...jν−1
−1 , (4.20)

φ
i1...iν−1
1 = τ−1

(ν − 1)!
εi1...iν−1j1...jν−1φ

j1...jν−1
1 , (4.21)

where εi1...iν−1j1...jν−1 is the Levi-Civita symbol normalized as ε12...d−2 = 1.
The total number of real-valued on-shell D.o.F. given in (4.19) is equal to

n = h(5ν − 7)(2ν − 4)!

(ν − 1)!(ν − 2)!
, h =

{
2 for d = 4k;
1 for d = 4k + 2.

(4.22)

Namely, we note that n is a sum of n
(
φ

i1...iν−1
±1

)
and n

(
φ

i1...iν−2
0

)
which are the respective numbers

of the real-valued independent tensorial components of the fields φ
i1...iν−1
±1 and φ

i1...iν−2
0 :

n = n
(
φ

i1...iν−1
1

)
+ n

(
φ

i1...iν−1
−1

)
+ n

(
φ

i1...iν−2
0

)
, (4.23)
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n
(
φ

i1...iν−1
±1

) = h(2ν − 2)!

2((ν − 1)!)2
, n

(
φ

i1...iν−2
0

) = h(2ν − 4)!

((ν − 2)!)2
. (4.24)

Using the light-cone gauge frame, one can make sure that, for d = 4k, the gauge invariant
Lagrangian (4.5) leads to the following light-cone gauge Lagrangian for fields (4.19):

Ll.c. = 1

(ν − 1)!
φ̄

i1...iν−1
1 � φ

i1...iν−1
−1 +

1

(ν − 1)!
φ̄

i1...iν−1
−1 � φ

i1...iν−1
1

+
1

(ν − 2)!
φ̄

i1...iν−2
0 � φ

i1...iν−2
0 − 1

(ν − 1)!
φ̄

i1...iν−1
1 φ

i1...iν−1
1 , (4.25)

while, for d = 4k + 2, the gauge invariant Lagrangian (4.6) leads to the following light-cone
gauge Lagrangian for fields (4.19):

Ll.c. = 1

(ν − 1)!
φ

i1...iν−1
1 � φ

i1...iν−1
−1 +

1

2(ν − 2)!
φ

i1...iν−2
0 �φ

i1...iν−2
0

− 1

2(ν − 1)!
φ

i1...iν−1
1 φ

i1...iν−1
1 . (4.26)

5. Oscillator form of the Lagrangian

In the preceding sections, we have presented our results for the self-dual fields by using the
representation of the field content in terms of the tensor fields. However, the use of such
representation is not convenient in many applications. In this section, we represent our results
by using the representation of the field content in terms of generating functions constructed
out of the tensor fields and the appropriate oscillators7. This is to say that in order to obtain
the Lagrangian description in an easy-to-use form, we introduce creation operators αa , ζ , υ⊕,
υ� and the respective annihilation operators ᾱa , ζ̄ , ῡ�, ῡ⊕ and collect tensor fields (4.1) in the
ket-vector |�〉 defined by

|�〉 =
(|φ〉

|t〉

)
, (5.1)

|φ〉 = υ⊕|φ1〉 + υ�|φ−1〉 + ζ |φ0〉, (5.2)

|φk′ 〉 ≡ 1

(ν − 1)!
αa1 . . . αaν−1φ

a1...aν−1
k′ |0〉, k′ = −1, 1, (5.3)

|φ0〉 ≡ 1

(ν − 2)!
αa1 . . . αaν−2φ

a1...aν−2
0 |0〉, (5.4)

|t〉 ≡ 1

ν!
αa1 . . . αaν ta1...aν |0〉. (5.5)

In the literature, ket-vectors (5.1)–(5.5) are sometimes referred to as generating functions.
The ket-vectors |φ〉, |t〉 satisfy the obvious algebraic constraints

(Nα + Nζ )|φ〉 = (ν − 1)|φ〉, (5.6)

(Nζ + Nυ)|φ〉 = |φ〉, (5.7)

Nα|t〉 = ν|t〉, (5.8)

7 Note that in this paper we use oscillators just to handle the many indices appearing for tensor fields. In a proper
way, the oscillators arise in the framework of the world-line approach to higher spin fields (see e.g. [17–19]).
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Nζ |t〉 = 0, Nυ |t〉 = 0, (5.9)

where we use the notation given in (2.6)–(2.10). We note that these algebraic constraints tell
us about the number of oscillators αa , ζ , υ⊕, υ� appearing in the ket-vectors |φ〉 and |t〉. In
terms of the ket-vector |t〉, the self-duality constraint (4.2) takes the form

|t〉 = ε|t〉 , (5.10)

where we use the notation for the ε-symbol

ε ≡ τ

(ν!)2
εa1...aνb1...bν αa1 . . . αaν ᾱbν . . . ᾱb1 . (5.11)

Useful relations for the ε-symbol (5.11) and various related ε-symbols may be found in
appendix D.

In terms of the ket-vector |�〉, Lagrangians (4.5), (4.6) can be re-expressed as

L = h

2
〈�|E|�〉 , (5.12)

where the normalization factor h is given in (4.22), while the operator E is defined by the
relations

E =
(

Eφφ Eφt

Etφ 0

)
, (5.13)

Eφφ = Eφφ(2) + Eφφ(1) + Eφφ(0) , (5.14)

Eφt = υ�ᾱ∂ , Etφ = −ῡ�α∂, (5.15)

Eφφ(2) = � −α∂ᾱ∂ , (5.16)

Eφφ(1) = e1ᾱ∂ + α∂ē1, (5.17)

Eφφ(0) = m1 , (5.18)

e1 = ζ ῡ� , ē1 = −υ�ζ̄ , m1 = υ�ῡ�(Nζ − 1) . (5.19)

Alternatively, the Lagrangian (5.12) can be represented in terms of the ket-vector of gauge
fields (5.2)–(5.5). This is to say that the Lagrangian takes the form (up to a total derivative)

−L = 〈F(φ−1)|F(φ1)〉 + 〈F(φ1)|F(φ−1)〉 + 〈F(φ1)|t〉 + 〈t |F(φ1)〉
+ (〈φ1| + 〈F(φ0)|)(|φ1〉 + |F(φ0)〉), (5.20)

when d = 4k, and

−L = 〈F(φ−1)|F(φ1)〉 + 〈F(φ1)|t〉 + 1
2 (〈φ1| + 〈F(φ0)|)(|φ1〉 + |F(φ0)〉), (5.21)

when d = 4k + 2. In (5.20), (5.21) and below, the ket-vector of the field strength |F(φ)〉 is
defined as

|F(φ)〉 = α∂|φ〉. (5.22)

5.1. Gauge transformations

Gauge transformations can also be cast into the generating form. To this end we use, as
before, the oscillators αa , ζ , υ⊕, υ� and collect gauge transformation parameters (4.9) into the
ket-vector |�〉 defined by

|�〉 =
(|ξ 〉

|λ〉

)
, (5.23)
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where the ket-vectors |ξ 〉 and |λ〉 are defined as

|ξ 〉 = υ⊕|ξ0〉 + υ�|ξ−2〉 − ζ |ξ−1〉, (5.24)

|ξk′−1〉 ≡ 1

(ν − 2)!
αa1 . . . αaν−2ξ

a1...aν−2
k′−1 |0〉, k′ = −1, 1, (5.25)

|ξ−1〉 ≡ 1

(ν − 3)!
αa1 . . . αaν−3ξ

a1...aν−3
−1 |0〉, (5.26)

|λ〉 ≡ 1

(ν − 1)!
αa1 . . . αaν−1λa1...aν−1 |0〉. (5.27)

The ket-vectors |ξ 〉, |λ〉 satisfy the obvious algebraic constraints

(Nα + Nζ )|ξ 〉 = (ν − 2)|ξ 〉, (5.28)

(Nζ + Nυ)|ξ 〉 = |ξ 〉 , (5.29)

Nα|λ〉 = (ν − 1)|λ〉 , (5.30)

Nζ |λ〉 = 0 , Nυ |λ〉 = 0 . (5.31)

As before, these constraints tell us about the number of oscillators αa , ζ , υ⊕, υ� appearing in
the ket-vectors |ξ 〉 and |λ〉.

Now, gauge transformations (4.11)–(4.14) can entirely be represented in terms of the
ket-vectors |�〉 and |�〉:

δ|�〉 = G|�〉 , (5.32)

where the operator G is given by

G =
(

α∂ − ζ ῡ� −υ�

0 (1 + ε)α∂

)
, (5.33)

and the ε-symbol is defined in (5.11).
Alternatively, the gauge transformation (5.32) can be represented in terms of the ket-

vector of gauge fields (5.2)–(5.5). This is to say that the gauge transformation (5.32) amounts
to the following gauge transformations:

δ|φ1〉 = |F(ξ0)〉, (5.34)

δ|φ−1〉 = |F(ξ−2)〉 − |λ〉 , (5.35)

δ|φ0〉 = |F(ξ−1)〉 − |ξ0〉 , (5.36)

δ|t〉 = (1 + ε)|F(λ)〉 , (5.37)

where the field strengths for the ket-vectors of the gauge transformation parameters are defined
as in (5.22).

5.2. Oscillator realization of conformal algebra symmetries on gauge fields

To complete the oscillator description of the conformal self-dual field, we provide a realization
of the conformal algebra symmetries on space of the ket-vector |�〉. The realization of the
Poincaré algebra symmetries and dilatation symmetry is given by (2.16)–(2.18), where the
operators Mab and � take the form

Mab = αaᾱb − αbᾱa , (5.38)
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� = d − 2

2
+ �′, �′ ≡ Nυ⊕ − Nυ� . (5.39)

Conformal boost transformations of |�〉 are given in (2.19). According to (2.19), we should
find the operators Ka

�,M and Ra. The former operator is given in (2.20). The realization of
the operator Ra on the space of |�〉 can be read from (4.15)–(4.18). Namely, in terms of the
ket-vector |�〉, transformations of the gauge fields given in (4.15)–(4.18) can be represented
as

δRa |�〉 = Ra|�〉 , (5.40)

where the realization of the operator Ra on |�〉 takes the form

Ra =
(

Ra
φφ Ra

φt

Ra
tφ 0

)
, (5.41)

Ra
φφ = r0,1ᾱ

a + αar̄0,1 + r1,1
(
ηab + εab

0

)
∂b, (5.42)

Ra
φt = r0,4ᾱ

a, (5.43)

Ra
tφ = r0,5(1 + ε)αa, (5.44)

r0,1 = ζ ῡ⊕, r̄0,1 = −υ⊕ζ̄ , (5.45)

r1,1 = −υ⊕ῡ⊕, (5.46)

r0,4 = −υ⊕, r0,5 = ῡ⊕, (5.47)

and the εab
0 -symbol is defined in (D.4).

Alternatively, conformal boost transformations (5.40) can be represented in terms of ket-
vectors (5.2)–(5.5). To this end, we note that the realization of the operator Ka

�,M on the space
of ket-vectors (5.2)–(5.5) is given by (2.20), where the operators Mab and � take the same
form as in (5.38), (5.39). Note that (5.39) implies the following conformal dimensions of the
respective ket-vectors:

�(|φk′ 〉) = d − 2

2
+ k′, k′ = 0,±1, (5.48)

�(|t〉) = d − 2

2
. (5.49)

We now make sure that the realization of the operator Ra given in (5.40) can be represented in
terms of ket-vectors (5.2)–(5.5) as

δRa |φ1〉 = −ᾱa|t〉 − αa|φ0〉 − (
ηab + εab

0

)
∂b|φ−1〉, (5.50)

δRa |φ−1〉 = 0 , (5.51)

δRa |φ0〉 = ᾱa|φ−1〉 , (5.52)

δRa |t〉 = (1 + ε)αa|φ−1〉 . (5.53)

Making use of these relations gives the conformal boost transformations of ket-vectors (5.2)–
(5.5).

We now recall that the realization of the conformal symmetries on a space of the ket-
vectors of gauge fields (5.50)–(5.53) is defined up to gauge transformations (5.34)–(5.37). As
we have demonstrated in section 4, the conformal symmetries can also be realized on a space
of the field strengths. We now discuss the oscillator form of the field strengths for gauge fields
(5.2)–(5.5) and the corresponding realization of conformal symmetries on a space of the field
strengths.
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5.3. Oscillator realization of conformal algebra symmetries on field strengths

We introduce the following ket-vectors of field strengths constructed out of ket-vectors of
gauge fields (5.2)–(5.5):

|F �〉 = |t〉 + (1 + ε)|F(φ−1)〉, (5.54)

|F 〉 = α∂|F �〉 , (5.55)

|F ⊕�〉 = |φ1〉 + |F(φ0)〉 , (5.56)

|F⊕〉 = |F(φ1)〉 , (5.57)

where |F(φk′)〉, k′ = 0,±1 are defined as in (5.22). One can make sure that field strengths
(5.54)–(5.57) are invariant under gauge transformations (5.34)–(5.37).

Conformal dimensions of the field strengths can be read from (5.48), (5.49) and (5.54)–
(5.57):

�(|F �〉) = d − 2

2
, �(|F 〉) = d

2
, �(|F ⊕�〉) = d

2
, �(|F⊕〉) = d + 2

2
. (5.58)

The realization of the Poincaré algebra symmetries and dilatation symmetry on the space of
the ket-vectors of field strengths is given by (2.16)–(2.18), where the operator Mab takes the
form as in (5.38), while conformal dimensions are given in (5.58).

Making use of transformations of the ket-vectors of gauge fields given in (5.50)–(5.53), we
find the corresponding conformal boost transformations of the ket-vectors of field strengths,

δKa |F �〉 = Ka
�,M |F �〉, (5.59)

δKa |F 〉 = Ka
�,M |F 〉 − αa|F �〉, (5.60)

δKa |F ⊕�〉 = Ka
�,M |F ⊕�〉 − ᾱa|F �〉, (5.61)

δKa |F⊕〉 = Ka
�,M |F⊕〉 + αa|F ⊕�〉 + ᾱa|F 〉 − ∂a|F �〉, (5.62)

where the operator Ka
�,M is given in (2.20), while the conformal dimensions are defined in

(5.58). Comparing these formulas with the general relation (2.19), we find the realization of
the operator Ra on a space of the ket-vectors of the field strengths:

δRa |F �〉 = 0, (5.63)

δRa |F 〉 = −αa|F �〉, (5.64)

δRa |F ⊕�〉 = −ᾱa|F �〉, (5.65)

δRa |F⊕〉 = αa|F ⊕�〉 + ᾱa|F 〉 − ∂a|F �〉. (5.66)

5.4. Oscillator form of the light-cone gauge Lagrangian

To discuss the oscillator form of the light-cone gauge Lagrangian, we collect fields (4.19) into
the following ket-vectors:

|φl.c.〉 = υ⊕|φ1〉l.c + υ�|φ−1〉l.c + ζ |φ0〉l.c, (5.67)

|φk′ 〉l.c ≡ 1

(ν − 1)!
αi1 . . . αiν−1φ

i1...iν−1
k′ |0〉, k′ = −1, 1, (5.68)
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|φ0〉l.c ≡ 1

(ν − 2)!
αi1 . . . αiν−2φ

i1...iν−2
0 |0〉. (5.69)

In terms of the ket-vector |φl.c.〉 (5.67), the light-cone gauge Lagrangians (4.25), (4.26) can
concisely be represented as

Ll.c. = h

2
〈φl.c.|(�−M2)|φl.c.〉, (5.70)

M2 ≡ υ�ῡ�, (5.71)

where the normalization factor h is given in (4.22).

6. Conclusions

In this paper, we applied the ordinary-derivative approach, developed in [25], to the study of
conformal self-dual fields in the flat space of an even dimension. The results presented here
should have a number of interesting applications and generalizations, some of which are as
follows.

(i) The results in this paper and the ones in [25] provide the complete ordinary-derivative
description of all fields that appear in the graviton supermultiplets of conformal
supergravity theories. It would be interesting to apply these results to the study of
supersymmetric conformal field theories [20–24] in the framework of ordinary-derivative
approach. The first step in this direction would be the understanding of how the
supersymmetries are realized in the framework of our approach.

(ii) Our approach to conformal theories (see [25, 26]) is based on the new realization of
conformal gauge symmetries via Stueckelberg fields. In our approach, the use of the
Stueckelberg fields is very similar to the one in the gauge invariant formulation of massive
fields. Stueckelberg fields provide interesting possibilities for the study of interacting
massive gauge fields (see e.g. [27, 28]). So we think that application of our approach to
the interacting conformal self-dual fields may lead to new interesting development.

(iii) The BRST approach is one of the powerful approaches to the analysis of various aspects
of relativistic dynamics (see e.g. [29, 30]). This approach is conveniently adapted for the
ordinary-derivative formulation. Recent application of the BRST approach to the study
of totally antisymmetric fields may be found in [31]. We think that extension of this
approach to the case of conformal self-dual fields should be relatively straightforward.

(iv) Self-dual fields studied in this paper are the particular case of mixed-symmetry fields. In
the previous years, there were interesting developments in studying the mixed-symmetry
fields [32–35] that are invariant with respect to Poincaré algebra symmetries. It would
be interesting to apply methods developed in [32–35] to studying the conformal self-dual
mixed-symmetry fields8. There are various other interesting approaches in the literature
which could be used to discuss the ordinary-derivative formulation of conformal self-dual
fields. This is to say that various recently developed interesting formulations in terms of
unconstrained fields in flat space may be found in [38, 39].
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Appendix A. Derivation of the ordinary-derivative gauge invariant Lagrangian

Because the methods for finding the ordinary-derivative Lagrangian for arbitrary d � 4 are
quite similar we present details of the derivation for the case of d = 4. To derive the ordinary-
derivative gauge invariant Lagrangian (3.5), we use the Lagrangian of the standard formulation
given in (2.33). First, in place of the field Tab, we introduce the fields tab and φa

−1 by the relation

T ab = tab + Fab(φ−1) +
τ

2
εabceF ce(φ−1) , (A.1)

where tab satisfies the self-duality constraint (3.2). Plugging (A.1) in (2.33) we obtain

Lst = − 1
2Fab(φ̄−1)� Fab(φ−1)

− 1
2 t̄ ab � Fab(φ−1) − 1

2Fab(φ̄−1)� tab + ∂at̄ac∂btbc, (A.2)

where the field strength Fab(φ−1) is defined as in (3.6). We note that the representation for
Tab given in (A.1) implies that Tab is invariant under the gauge transformations

δφa
−1 = ∂aξ−2 − λa , (A.3)

δtab = ∂aλb − ∂bλa + τεabce∂cλe. (A.4)

This implies that Lagrangian (A.2) is also invariant under gauge transformations (A.3), (A.4).
Second, we introduce new fields φa

1 and φ0 by using the following Lagrangian in place of
(A.2):

L = Lst − X̄aXa , (A.5)

where we use the notation

Xa ≡ φa
1 + ∂aφ0 − ∂bF ba(φ−1) − ∂btba, (A.6)

and X̄a is complex conjugate of Xa. It is clear that, on-shell, Lagrangians Lst and L describe
the same field D.o.F. Using the formula (up to total derivative)

∂atac∂bF bc = − 1
2 tab � Fab , (A.7)

it is easy to see that Lagrangian (A.5) gives the ordinary-derivative Lagrangian (3.5).
We now consider gauge symmetries of Lagrangian (A.5). Because the contribution to Xa

given by (see (A.6))

− ∂bF ba(φ−1) − ∂btba (A.8)

is invariant under gauge transformations (A.3), (A.4), the Xa is also invariant under these gauge
transformations, i.e. Lagrangian (A.5) is invariant under gauge transformations (A.3), (A.4).
Besides this, we note that Xa is invariant under the additional gauge transformations

δφa
1 = ∂aξ0, δφ0 = −ξ0. (A.9)

Altogether, gauge transformations (A.3), (A.4), (A.9) amount to the ones given in (3.10)–
(3.13).

Appendix B. Derivation of the operator Ra

In this appendix, we outline the derivation of the operator Ra (5.41). The use of the oscillator
formulation turns out to be convenient for this purpose. The operator Ra is then determined
by requiring the action of the self-dual field (4.4) to be invariant under the conformal boost
transformations. In order to analyze restrictions imposed on the operator Ra by the conformal
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boost symmetries, we need to know the explicit form of the restrictions imposed on the operator
E (5.13) by the Lorentz and dilatation symmetries. Requiring action (4.4) with Lagrangian
(5.12) to be invariant under the Lorentz and dilatation symmetries δJ abS = 0, δDS = 0,
amounts to the following respective equations for the operator E:

[E, J ab] = 0 , [E,D] = 2E , (B.1)

where the operators Jab and D are given in (2.17) and (2.18), respectively.
The variation of Lagrangian (5.12) under the conformal boost transformation can be

presented as (up to total derivative)

δKaL = h

2
〈�|δKaE|�〉, (B.2)

δKaE ≡ Ka†E + EKa . (B.3)

Using (B.1) and Ka given in (2.19), we make sure that δKaE (B.3) can be represented as

δKaE = Ra†E + ERa + Ea, (B.4)

Ea ≡ (� + 1)[E, xa] + [E, xb]Mab − 1
2 [[E, xb], xb]∂a, (B.5)

where Mab and � are given in (5.38), (5.39). From (B.2), (B.4), we see that the requirement of
invariance of the action under the conformal boost transformations amounts to the equations

Ra†E + ERa + Ea ≈ 0 . (B.6)

In (B.6) and below, to simplify our formulas, we adopt the following convention. Let A be
some operator. We use the relation A ≈ 0 in place of 〈�|A|�〉 = 0.

Using the operator E (5.13)–(5.19) and formula (B.5), we find immediately the operator
Ea:

Ea =
(

Ea
φφ(1)

+ Ea
φφ(0)

−υ�ᾱa

−αaῡ� 0

)
, (B.7)

Ea
φφ(1)

= 2�′∂a − (�′ + Nζ )α
aᾱ∂ + (−�′ + Nζ )α∂ᾱa, (B.8)

Ea
φφ(0)

= (�′ − Nζ )e1ᾱ
a + αaē1(�

′ + Nζ ), (B.9)

where e1, ē1 and �′ are given in (5.19) and (5.39), respectively. Also we note that the
commutation relation [D,Ka] = Ka gives the following equation for the operator Ra:

[D,Ra] = Ra . (B.10)

Equations (B.6), (B.10) constitute a complete system of equations which allows us to determine
the operator Ra uniquely. We now discuss the procedure of solving these equations.

The operator E (5.13) is a second-order polynomial in the derivative. From (B.7), we see
that the operator Ea is a first-order polynomial in the derivative. The operator Ra also turns out
to be the first-order polynomial in the derivative. Therefore, it is convenient to represent the
operators E, Ea and Ra as power series in the derivative:

E = E(2) + E(1) + E(0) , (B.11)

Ea = Ea
(1)

+ Ea
(0)

, Ra = Ra
(1)

+ Ra
(0)

, (B.12)

where the operators E(n), Ea
(n)

and Ra
(n)

are degree-n homogeneous polynomials in the derivative.
Explicit expressions for the operators E(n) and Ea

(n)
can easily be read from the respective
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expressions in (5.13)–(5.19) and (B.7)–(B.9). Using (B.11) and (B.12), it is easy to see that
equation (B.6) amounts to the following equations:

E(2)R
a
(1)

+ h.c. ≈ 0, (B.13)

E(2)R
a
(0)

+ E(1)R
a
(1)

+ h.c. ≈ 0, (B.14)(
E(1)R

a
(0)

+ E(0)R
a
(1)

+ h.c.
)

+ Ea
(1)

≈ 0, (B.15)(
E(0)R

a
(0)

+ h.c.
)

+ Ea
(0)

≈ 0. (B.16)

We now present our procedure for solving equations (B.10) and (B.13)–(B.16).

(i) We note that the most general operators Ra
(n)

(B.12) acting on 2-vector |�〉 (5.1) can be
presented as 2 × 2 matrices given by

Ra
(n)

=
(

Ra
φφ(n)

Ra
φt(n)

Ra
tφ(n)

Ra
tt(n)

)
, n = 0, 1. (B.17)

Requiring the operator Ra to satisfy equation (B.10) and constraints (5.28)–(5.31), we
find the following expressions9:

Ra
φφ(0)

= r0,1ᾱ
a + αar̄0,1, (B.18)

Ra
φφ(1)

= r1,1∂
a + r1,5α

aᾱ∂ + rε1ε
ab
0 ∂b, (B.19)

Ra
φt(0)

= r0,4ᾱ
a, (B.20)

Ra
φt(1)

= 0, (B.21)

Ra
tφ(0)

= r0,5(1 + ε)αa, (B.22)

Ra
tφ(1)

= 0, (B.23)

Ra
tt(n)

= 0, n = 0, 1, (B.24)

where the operators r0,1, r0,2, r0,4, r0,5, r1,1, r1,5 , rε1 independent of the oscillators αa are
given by

r0,1 = ζ r̃0,1ῡ
⊕, r̄0,1 = υ ⊕̃r̄0,1ζ̄ , (B.25)

r1,1 = υ ⊕̃r1,1ῡ
⊕, rε,1 = υ ⊕̃rε,1ῡ

⊕, r1,5 = υ ⊕̃r1,5ῡ
⊕, (B.26)

r0,4 = υ ⊕̃r0,4, r0,5 = r̃0,5ῡ
⊕, (B.27)

and the quantities r̃0,1, ˜̄r0,1, r̃0,4, r̃0,5, r̃1,1, r̃1,5 , r̃ε1 independent of the oscillators αa , ζ ,
υ⊕, υ� remain as undermined constants. Below, we determine these quantities by using
equations (B.13)–(B.16).
Before analyzing equations (B.13)–(B.16), we explain our terminology. Introducing
the notation X for the left-hand side of equations (B.13)–(B.16), we note that X is a
2 × 2 matrix acting on 2-vector |�〉 (5.1). Using the notation

X =
(
Xφφ Xφt

Xtφ Xt t

)
, (B.28)

we note that the 2 × 2 matrix equation X ≈ 0 amounts to the four equations,
〈φ|Xφφ|φ〉 = 0, 〈φ|Xφt |t〉 = 0, 〈t |Xtφ|φ〉 = 0, 〈t |Xt t |t〉 = 0. We refer to these four
equations as the respective φφ-, φt-, tφ- and t t-parts of the equation X ≈ 0. We now
turn to the analysis of equations (B.13)–(B.16).

9 As a realization of the operator Ra on the gauge field |�〉 is defined up to gauge transformation (5.32), we ignore
contributions to Ra that can be removed by the gauge transformation (5.32).
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(ii) Using the φφ part of equation (B.13) and the relation

Eφφ(2)R
a
φφ(1)

= r1,1Eφφ(2)∂
a + r1,5 �αaᾱ∂ − r1,5α∂ᾱ∂∂a + rε,1 � εab

0 ∂b, (B.29)

we find

r̃
†
1,1 = r̃1,1, r̃

†
ε,1 = r̃ε,1, r̃1,5 = 0. (B.30)

(iii) Making use of the φφ part of equation (B.14) and the relations

Eφφ(2)R
a
φφ(0)

= αaEφφ(2)r̄0,1 + r0,1Eφφ(2)ᾱ
a − α∂∂ar̄0,1, (B.31)

Eφφ(1)R
a
φφ(1)

= e1r1,1ᾱ∂∂a + α∂∂aē1r1,1, (B.32)

we obtain

r̄0,1 = [ē1, r1,1] , r̃
†
0,1 = −̃r̄0,1 . (B.33)

(iv) Using the φφ part of equation (B.15) and the relations

Eφφ(1)R
a
φφ(0)

= e1r̄0,1∂
a − e1r̄0,1α

aᾱ∂ + ē1r0,1α∂ᾱa, (B.34)

Eφφ(0)R
a
φφ(1)

= m1r1,1∂
a + m1rε,1ε

ab
0 ∂b , (B.35)

EφtR
a
tφ(0)

= υ�r0,5∂
a − υ�r0,5α

aᾱ∂ − υ�r0,5ε
ab
0 ∂b, (B.36)

we find

r̃0,5 = 1, r̃ε,1 = −1, r̃0,1 = 1, r̃1,1 = −1. (B.37)

(v) Using the φt part of equation (B.14) and the relation

Eφφ(2)R
a
φt(0)

+
(
EtφRa

φφ(1)

)† = (r0,4 − r1,1υ
�)ᾱ∂ + (r0,4 − rε,1υ

�)εab
0 ∂bᾱ∂, (B.38)

we obtain

r̃0,4 = −1, r̃0,4 = r̃ε,1. (B.39)

(vi) Using r̃0,1, ˜̄r0,1, r̃0,4, r̃0,5, r̃1,1, r̃1,5 , r̃ε1 given above, we make sure that all the remaining
equations in (B.13)–(B.16) are satisfied automatically. We note that in the analysis of the
t t part of equation (B.15), we use the identity

〈t |αaᾱ∂|t〉 = 〈t |α∂ᾱa|t〉, (B.40)

which can be proved by using the self-duality constraint (5.10).

Appendix C. On-shell D.o.F. of the self-dual field in 4d

We analyze the on-shell D.o.F. of the conformal self-dual field in 4d with the Lagrangian (3.5).
To this end we use the light-cone gauge. In the light-cone frame, the spacetime coordinates
xa are decomposed as xa = x+, x−, xi , where the light-cone coordinates in ± directions
are defined as x± = (x3 ± x0)/

√
2 and x+ is taken to be a light-cone time. The so(2)

algebra vector indices take values i, j = 1, 2. We adopt the conventions ∂i = ∂i ≡ ∂/∂xi ,
∂± = ∂∓ ≡ ∂/∂x∓.

We are going to prove that the on-shell D.o.F. of the self-dual field are described by two
so(2) algebra self-dual complex-valued vector fields φi

−1, φi
1 and one complex-valued scalar

field φ0:

φi
−1 , φi

1 , φ0, (C.1)
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which satisfy the equations of motion

�φi
−1 − φi

1 = 0 , �φi
1 = 0, �φ0 = 0. (C.2)

The vector fields satisfy the so(2) self-duality constraint:

πijφ
j

−1 = 0 , πijφ
j

1 = 0. (C.3)

Here and below, we use the notation

πij ≡ δij + τεij , π̄ ij ≡ δij − τεij , (C.4)

where δij is the Kronecker delta, while εij is the Levi-Civita symbol normalized as ε12 = 1.
In order to find on-shell D.o.F., we use equations of motion obtained from Lagrangian

(3.5) and the self-duality constraint (3.2):

∂aF ab(φ1) = 0, (C.5)

∂bF ba(φ−1) + ∂btba − φa
1 − ∂aφ0 = 0 , (C.6)

�φ0 + ∂aφa
1 = 0 , (C.7)

Fab(φ1) = τ

2
εabceF ce(φ1), (C.8)

tab = τ

2
εabcetce . (C.9)

Taking into account the light-cone frame decomposition of the vector and tensor fields
(3.1),

φa
−1 = φ+

−1, φ
−
−1, φ

i
−1, φa

1 = φ+
1 , φ−

1 , φi
1, tab = t+−, t+i , t−i , t ij , (C.10)

we note that some of the gauge transformations given (3.10)–(3.13) can be represented as

δφ+
1 = ∂+ξ0 , (C.11)

δφ+
−1 = ∂+ξ−2 − λ+, (C.12)

δφi
−1 = ∂iξ−2 − λi, (C.13)

δt+− = ∂+λ− − ∂−λ+ + τεij ∂iλj , (C.14)

δt+i = π̄ ij (∂+λj − ∂jλ+). (C.15)

From (C.11), we see that the field φ+
1 can be gauge away by using the ξ0 gauge transformation.

From (C.12), (C.13), we see that the fields φ+
−1 and πijφ

j

−1 can be gauged away by using the
respective ξ−2 and πijλj gauge transformations. From (C.14), (C.15), we see that the fields t+−

and π̄ ij t+j can be gauged away by using the respective λ− and π̄ ij λj gauge transformations.
To summarize, we can impose the following gauge conditions:

φ+
1 = 0 , (C.16)

φ+
−1 = 0 , (C.17)

πijφ
j

−1 = 0 , (C.18)

π̄ ij t+j = 0 , (C.19)

t+− = 0. (C.20)
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Using gauge conditions (C.16)–(C.20), one can make sure that equations (C.5)–(C.9) amount
to the following equations:

�φa
1 = 0, (C.21)

∂aφa
1 = 0, (C.22)

∂aφa
−1 + φ0 = 0. (C.23)

�φa
−1 + ∂btba − φa

1 = 0, (C.24)

�φ0 = 0, (C.25)

πijφ
j

1 = 0, (C.26)

πij t+j = 0, (C.27)

π̄ ij t−j = 0, (C.28)

t ij = 0. (C.29)

We now analyze gauge conditions (C.16)–(C.20) and equations (C.21)–(C.29).

(i) In view of (C.18), (C.26), we see that the so(2) algebra vector fields φi
−1, φi

1 indeed satisfy
the self-duality constraint given in (C.3).

(ii) Equation (C.21) leads to the second equation in (C.2).
(iii) Differential constraints (C.22), (C.23) and gauge conditions (C.16), (C.17) tell us that the

non-dynamical fields φ−
1 and φ−

−1 can be expressed in terms of fields (C.1):

φ−
1 = − ∂i

∂+
φi

1, φ−
−1 = − ∂i

∂+
φi

−1 − 1

∂+
φ0. (C.30)

(iv) Equations (C.19), (C.27) imply

t+i = 0. (C.31)

(v) Taking into account (C.29), (C.31) and using equation (C.24), we obtain

� φi
−1 + ∂+t−i − φi

1 = 0. (C.32)

Multiplying equation (C.32) by π̄ ij and using constraint (C.18), we obtain the first
equation in (C.2).

(vi) Multiplying equation (C.32) by πij and taking into account (C.18), (C.26) gives the
equation

πij t−j = 0 . (C.33)

Equations (C.28), (C.33) imply

t−i = 0. (C.34)

Taking into account (C.20), (C.29), (C.31), (C.34), we see that tab = 0.

To summarize, we proved that on-shell D.o.F. of the self-dual field with Lagrangian (3.5)
are described by fields given in (C.1). These fields satisfy equations of motion (C.2) and
self-duality constraints (C.3). The light-cone gauge Lagrangian which leads to equations of
motion (C.2) is given in (3.39).
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Appendix D. ε-symbols

In this appendix, we describe various useful relations for ε-symbols that we use in the paper.
We introduce the following ε-symbols constructed out of the Levi-Civita symbol εa1...aνb1...bν

and the oscillators:

ε ≡ τ

(ν!)2
εa1...aνb1...bν αa1 . . . αaν ᾱbν . . . ᾱb1 , (D.1)

εa ≡ τ

ν!(ν − 1)!
εa1...aνab2...bν αa1 . . . αaν ᾱbν . . . ᾱb2 , (D.2)

ε̄a ≡ τ

ν!(ν − 1)!
εaa2...aνb1...bν αa2 . . . αaν ᾱbν . . . ᾱb1 , (D.3)

εab
0 ≡ τ

((ν − 1)!)2
εaa2...aνbb2...bν αa2 . . . αaν ᾱbν . . . ᾱb2 , (D.4)

εab ≡ τ

ν!(ν − 2)!
εa1...aνabb3...bν αa1 . . . αaν ᾱbν . . . ᾱb3 , (D.5)

ε̄ab ≡ τ

ν!(ν − 2)!
εaba3...aνb1...bν αa3 . . . αaν ᾱbν . . . ᾱb1 , (D.6)

where τ is defined in (2.28). We note the following helpful relations for these ε-symbols:

εa ≡ [ε, αa], ε̄a ≡ [ᾱa, ε], (D.7)

εab ≡ {[ε, αa], αb}, ε̄ab ≡ {ᾱa, [ᾱb, ε]}, (D.8)

εab
0 ≡ {[ᾱa, ε], αb},= {ᾱa, εb} = {ε̄a, αb}. (D.9)

Our ε-symbols satisfy the following Hermitian conjugation rules:

ε† = −ε , εa† = −ε̄a, ε
ab†
0 = εab

0 , εab† = ε̄ab. (D.10)

On the space of the ket-vector |φ〉 subject to the constraint

Nα|φ〉 = ν|φ〉, (D.11)

we obtain the relation

ε2|φ〉 = |φ〉. (D.12)

It is this property of the ε-symbol that is used for the definition of the self-dual ket-vector |t〉
(5.10). One has the following helpful identities involving ε-symbols, the oscillators and the
derivative:

α∂εab
0 ∂b = εb∂b∂a − εa � +εabᾱ∂∂b, (D.13)

εab
0 ᾱ∂∂b = −ε̄b∂b∂a + ε̄a � +α∂ε̄ab∂b. (D.14)

References

[1] Schwarz J H and West P C 1983 Phys. Lett. B 126 301
[2] Marcus N and Schwarz J H 1982 Phys. Lett. B 115 111
[3] Berkovits N 1997 Phys. Lett. B 395 28 (arXiv:hep-th/9610134)
[4] Pasti P, Sorokin D P and Tonin M 1997 Phys. Rev. D 55 6292 (arXiv:hep-th/9611100)
[5] Bandos I, Bekaert X, de Azcarraga J A, Sorokin D and Tsulaia M 2005 J. High Energy Phys. JHEP05(2005)031

(arXiv:hep-th/0501113)

25

http://dx.doi.org/10.1016/0370-2693(83)90168-5
http://dx.doi.org/10.1016/0370-2693(82)90807-3
http://dx.doi.org/10.1016/S0370-2693(97)00036-1
http://www.arxiv.org/abs/hep-th/9610134
http://dx.doi.org/10.1103/PhysRevD.55.6292
http://www.arxiv.org/abs/hep-th/9611100
http://dx.doi.org/10.1088/1126-6708/2005/05/031
http://www.arxiv.org/abs/hep-th/0501113


J. Phys. A: Math. Theor. 43 (2010) 115401 R R Metsaev

[6] Fradkin E S and Tseytlin A A 1985 Phys. Rep. 119 233
[7] Zinoviev Yu M 2001 On massive high spin particles in (A)dS arXiv:hep-th/0108192
[8] Metsaev R R 2006 Phys. Lett. B 643 205 (arXiv:hep-th/0609029)
[9] Lopatin V E and Vasiliev M A 1988 Mod. Phys. Lett. A 3 257

[10] Vasiliev M A 1988 Nucl. Phys. B 301 26
[11] Labastida J M F 1989 Nucl. Phys. B 322 185
[12] Metsaev R R 1995 Phys. Lett. B 354 78
[13] Bekaert X and Boulanger N 2004 Commun. Math. Phys. 245 27 (arXiv:hep-th/0208058)
[14] Bekaert X and Boulanger N 2007 Commun. Math. Phys. 271 723 (arXiv:hep-th/0606198)
[15] Hallowell K and Waldron A 2005 Nucl. Phys. B 724 453 (arXiv:hep-th/0505255)
[16] Artsukevich A Y and Vasiliev M A 2009 Phys. Rev. D 79 045007 (arXiv:0810.2065 [hep-th])
[17] Engquist J and Sundell P 2006 Nucl. Phys. B 752 206 (arXiv:hep-th/0508124)
[18] Bastianelli F, Corradini O and Latini E 2007 J. High Energy Phys. JHEP02(2007)072 (arXiv:hep-th/0701055)
[19] Bastianelli F, Corradini O and Latini E 2008 J. High Energy Phys. JHEP11(2008)054 (arXiv:0810.0188

[hep-th])
[20] Bergshoeff E, de Roo M and de Wit B 1981 Nucl. Phys. B 182 173
[21] Bergshoeff E, de Roo M and de Wit B 1983 Nucl. Phys. B 217 489
[22] Bergshoeff E, Sezgin E and Van Proeyen A 1986 Nucl. Phys. B 264 653

Bergshoeff E, Sezgin E and Van Proeyen A 2001 Nucl. Phys. B 598 667
[23] Bergshoeff E, Sezgin E and Van Proeyen A 1999 Class. Quantum Grav. 16 3193 (arXiv:hep-th/9904085)
[24] Bergshoeff E, Salam A and Sezgin E 1987 Nucl. Phys. B 279 659
[25] Metsaev R R 2007 Ordinary-derivative formulation of conformal low spin fields arXiv:0707.4437 [hep-th]

Metsaev R R 2007 Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields
arXiv:0709.4392 [hep-th]

[26] Metsaev R R 2008 Phys. Rev. D 78 106010 (arXiv:0805.3472 [hep-th])
[27] Zinoviev Yu M 2007 Nucl. Phys. B 770 83 (arXiv:hep-th/0609170)
[28] Metsaev R R 2008 Phys. Rev. D 77 025032 (arXiv:hep-th/0612279)
[29] Siegel W 1999 Fields arXiv:hep-th/9912205
[30] Fotopoulos A and Tsulaia M 2009 Int. J. Mod. Phys. A 24 1 (arXiv:0805.1346 [hep-th])
[31] Buchbinder I L, Krykhtin V A and Ryskina L L 2009 Mod. Phys. Lett. A 24 401 (arXiv:0810.3467 [hep-th])
[32] Zinoviev Yu M 2002 On massive mixed symmetry tensor fields in Minkowski space and (A)dS

arXiv:hep-th/0211233
Zinoviev Yu M 2003 First order formalism for mixed symmetry tensor fields arXiv:hep-th/0304067
Zinoviev Yu M 2003 First order formalism for massive mixed symmetry tensor fields arXiv:hep-th/0306292

[33] Skvortsov E D 2008 J. High Energy Phys. JHEP07(2008)004 (arXiv:0801.2268 [hep-th])
Skvortsov E D 2009 Nucl. Phys. B 808 569 (arXiv:0807.0903 [hep-th])

[34] Alkalaev K B, Grigoriev M and Tipunin I Y 2009 Nucl. Phys. B 823 509 (arXiv:0811.3999 [hep-th])
[35] Moshin P Y and Reshetnyak A A 2007 J. High Energy Phys. JHEP10(2007)040 (arXiv:0707.0386 [hep-th])
[36] Shaynkman O V, Tipunin I Y and Vasiliev M A 2006 Rev. Math. Phys. 18 823 (arXiv:hep-th/0401086)
[37] Vasiliev M A 2009 Bosonic conformal higher-spin fields of any symmetry arXiv:0909.5226 [hep-th]
[38] Buchbinder I L and Galajinsky A V 2008 J. High Energy Phys. JHEP11(2008)081 (arXiv:0810.2852 [hep-th])
[39] Campoleoni A, Francia D, Mourad J and Sagnotti A 2009 Nucl. Phys. B 815 289 (arXiv:0810.4350 [hep-th])

26

http://dx.doi.org/10.1016/0370-1573(85)90138-3
http://www.arxiv.org/abs/hep-th/0108192
http://dx.doi.org/10.1016/j.physletb.2006.11.002
http://www.arxiv.org/abs/hep-th/0609029
http://dx.doi.org/10.1142/S0217732388000313
http://dx.doi.org/10.1016/0550-3213(88)90161-7
http://dx.doi.org/10.1016/0550-3213(89)90490-2
http://dx.doi.org/10.1016/0370-2693(95)00563-Z
http://dx.doi.org/10.1007/s00220-003-0995-1
http://www.arxiv.org/abs/hep-th/0208058
http://dx.doi.org/10.1007/s00220-006-0187-x
http://www.arxiv.org/abs/hep-th/0606198
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.021
http://www.arxiv.org/abs/hep-th/0505255
http://dx.doi.org/10.1103/PhysRevD.79.045007
http://www.arxiv.org/abs/0810.2065
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.040
http://www.arxiv.org/abs/hep-th/0508124
http://dx.doi.org/10.1088/1126-6708/2007/02/072
http://www.arxiv.org/abs/hep-th/0701055
http://dx.doi.org/10.1088/1126-6708/2008/11/054
http://www.arxiv.org/abs/0810.0188
http://dx.doi.org/10.1016/0550-3213(81)90465-X
http://dx.doi.org/10.1016/0550-3213(83)90159-1
http://dx.doi.org/10.1016/0550-3213(86)90503-1
http://dx.doi.org/10.1016/S0550-3213(01)00006-2
http://dx.doi.org/10.1088/0264-9381/16/10/311
http://www.arxiv.org/abs/hep-th/9904085
http://dx.doi.org/10.1016/0550-3213(87)90015-0
http://www.arxiv.org/abs/0707.4437
http://www.arxiv.org/abs/0709.4392
http://dx.doi.org/10.1103/PhysRevD.78.106010
http://www.arxiv.org/abs/0805.3472
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.005
http://www.arxiv.org/abs/hep-th/0609170
http://dx.doi.org/10.1103/PhysRevD.77.025032
http://www.arxiv.org/abs/hep-th/0612279
http://www.arxiv.org/abs/hep-th/9912205
http://dx.doi.org/10.1142/S0217751X09043134
http://www.arxiv.org/abs/0805.1346
http://dx.doi.org/10.1142/S021773230903014X
http://www.arxiv.org/abs/0810.3467
http://www.arxiv.org/abs/hep-th/0211233
http://www.arxiv.org/abs/hep-th/0304067
http://www.arxiv.org/abs/hep-th/0306292
http://dx.doi.org/10.1088/1126-6708/2008/07/004
http://www.arxiv.org/abs/0801.2268
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.007
http://www.arxiv.org/abs/0807.0903
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.007
http://www.arxiv.org/abs/0811.3999
http://dx.doi.org/10.1088/1126-6708/2007/10/040
http://www.arxiv.org/abs/0707.0386
http://dx.doi.org/10.1142/S0129055X06002814
http://www.arxiv.org/abs/hep-th/0401086
http://www.arxiv.org/abs/0909.5226
http://dx.doi.org/10.1088/1126-6708/2008/11/081
http://www.arxiv.org/abs/0810.2852
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.019
http://www.arxiv.org/abs/0810.4350

	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Global conformal symmetries
	2.3. Standard approach to self-dual fields

	3. Ordinary-derivative approach to the self-dual field for d=4
	3.1. Gauge transformations
	3.2. Realization of conformal algebra symmetries
	3.3. Realization of conformal algebra symmetries on the space of field strengths
	3.4. On-shell degrees of freedom and light-cone gauge Lagrangian

	4. Ordinary-derivative approach to the self-dual field for arbitrary d =2 nu
	4.1. Gauge transformations
	4.2. Realization of conformal algebra symmetries
	4.3. On-shell degrees of freedom and the light-cone gauge Lagrangian

	5. Oscillator form of the Lagrangian
	5.1. Gauge transformations
	5.2. Oscillator realization of conformal algebra symmetries on gauge fields
	5.3. Oscillator realization of conformal algebra symmetries on field strengths
	5.4. Oscillator form of the light-cone gauge Lagrangian

	6. Conclusions
	Acknowledgments
	Appendix A. Derivation of the ordinary-derivative gauge invariant Lagrangian
	Appendix B. Derivation of the operator  Ra   
	Appendix C. On-shell D.o.F. of the self-dual field in 4d
	Appendix D. \epsilon-symbols
	References

